<< 前のエントリ合通ロジのトップページへ
2018年01月24日

【流 通】人の実績データに頼らず自己競争により学習を行うビジネス向けAI技術


日立製作所(以下、日立)は、複数のAIを相互接続したAI群でビジネスを表現し、AI群同士がコンピューター上で自己競争を行うことで、人が用意した実績データに頼らずに学習を行うビジネス向けのAI技術を開発した。サプライチェーン上の複数の企業によるビジネスを模擬した「ビールゲーム」に本AI技術を適用したところ、人の経験に基づいた判断と比べて、在庫や欠品による損失を約1/4に低減できることを確認した。すでに囲碁などの対戦型ゲームでは、自己競争によるAIの学習の有効性が示されていたが、今回、不確定要素の多いビジネスの問題についても、自己競争を活用した学習が有効であることを示すことができた。

通常、ディープラーニングなどを用いたAIは、大量の実績データから学習することで予測や判断を行う。そのため、大量のデータが入手できない場合には、正確な予測や判断が難しくなるという課題があった。囲碁などの対戦型ゲームにおいては、AIが自己競争によって自ら生成した大量のデータを用いて学習することで賢くなることが確認されているが、不確定要素の多いビジネスの問題に適用できるかは不明であった。

今回、日立が開発した、ビジネスの問題に適用可能な、自己競争を活用して学習するAI技術では、ビジネスに関わる企業を、ディープラーニングを用いたAIエージェントで表し、複数のAIエージェントを相互接続したAI群でビジネスを表現する。各AIエージェントは、置かれた状況を考慮して、お互いにモノや情報のやりとりを繰り返すことで、損失低減などの与えられたアウトカム(※)の向上に有効なアクションを学習する。学習を行う際には、AI群をコンピューター上に複数生成し、同時並行で学習を実行する。そして、それぞれのAI群の全体のアウトカムを競わせる「自己競争」を何千回と繰り返すことで、より良いアウトカムを追求する。

※ アウトカム
ビジネスにおいて、向上させたい(最大化、あるいは最小化したい)数値に相当し、問題に応じて人が設定する

※ 製品名および会社名は、各社の商標または登録商標です

投稿者:gotsuat 09:40| 流通